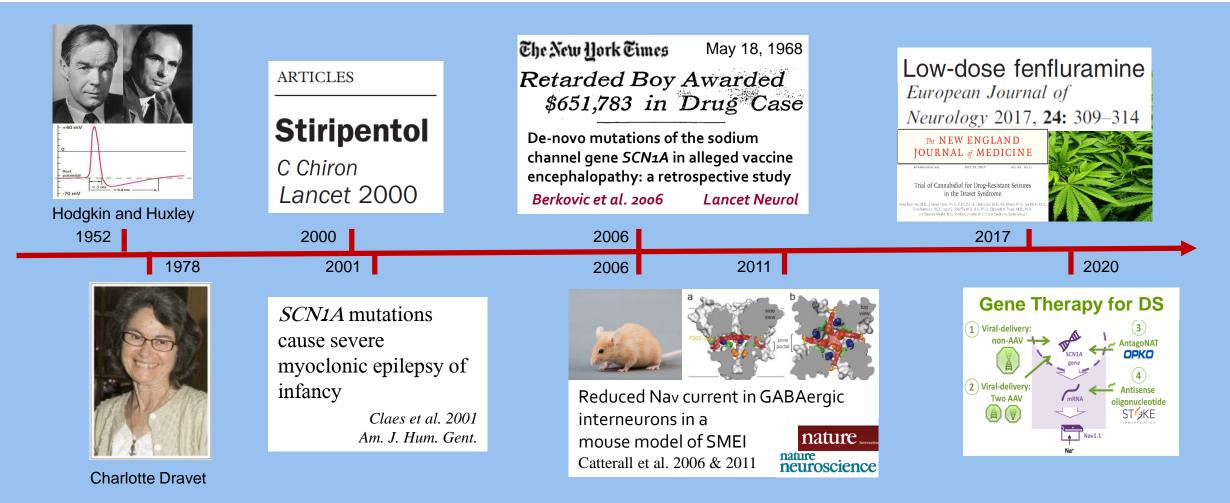
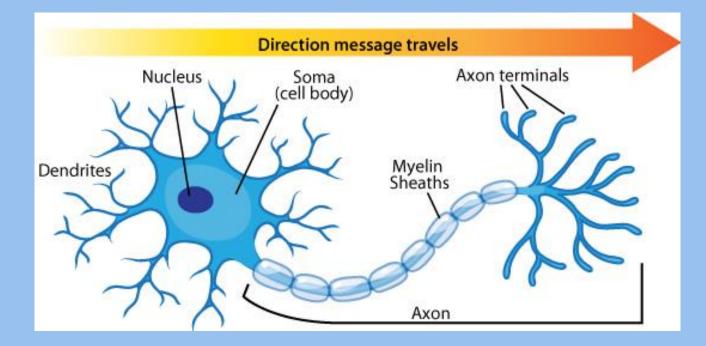

Hope for families with life-limiting epilepsy

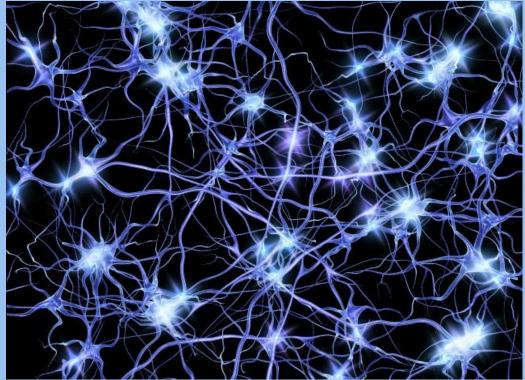
Parent/Carer & Professional Conference 2019

#DSUKLondon19

This Independent meeting is supported by an educational grant from GW Pharmaceuticals and Zogenix. And also supported by XTX Markets

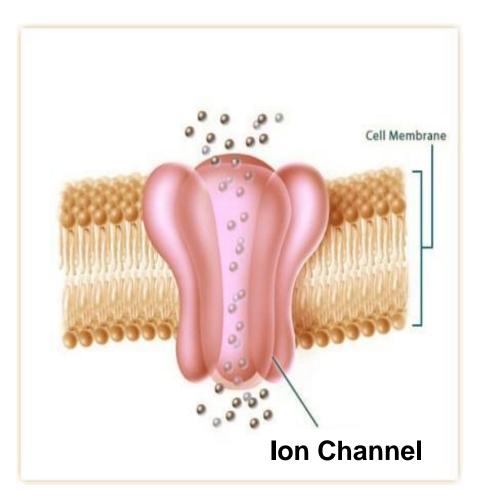



10-year follow-up of patients with Dravet Syndrome in the UK


Dr Andreas Brunklaus

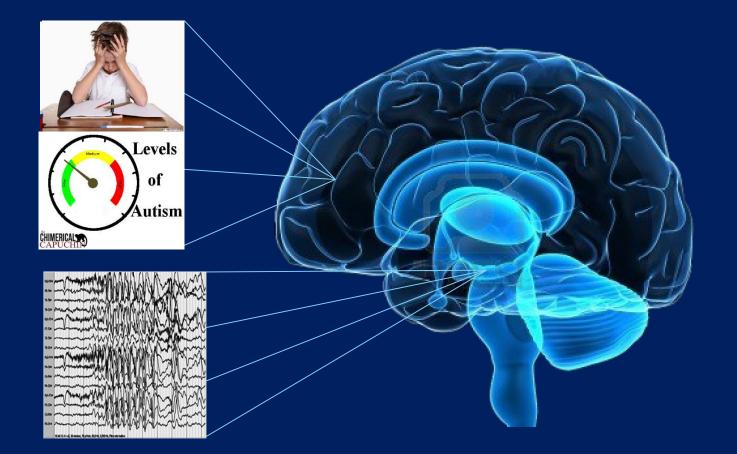
How Dravet syndrome became a model for studying childhood genetic epilepsies

The Brain = 100 billion nerve cells



www.dravet.org.uk

#DSUKLondon19


Sodium channel alpha 1 subunit (SCN1A)

www.dravet.org.uk

Dravet syndrome - an ion channel disease

Nabbout et al. (2013) Orphanet J Rare Dis. 13;8:176; Brunklaus & Zuberi (2014) Epilepsia 55(7):979-984

www.dravet.org.uk

#DSUKLondon19

UK 2009 Dravet syndrome cohort study

Brain 2012: 135: 2329–2336 | 2329

Epilepsia, 52(8):1476–1482, 2011 doi: 10.1111/j.1528-1167.2011.03129.x

Prognostic, clinical and demographic features in SCN1A mutation-positive Dravet syndrome

A. Brunklaus,^{1,2} R. Ellis,³ E. Reavey,³ G.H. Forbes³ and S.M. Zuberi¹

FULL-LENGTH ORIGINAL RESEARCH

Comorbidities and predictors of health-related quality of life in Dravet syndrome

*†Andreas Brunklaus, *Liam Dorris, and *Sameer M. Zuberi

- 241 individuals (1 to 42 years)
- Analysis of UK birth cohort from 2003 2007 (n=88)
- Incidence at least 1 in 40,900 now 1 in 15,000!
- ▶ 5 reported deaths (6%) at median of 5 years (status epilepticus 2 cases, SUDEP 3 cases)

Dravet Syndrome UK Survey

Dravet Syndrome UK families were asked to rate 5 areas in order of importance to them. The ranked them in the following order (with 1 being the most important):

- 1) Autistic behaviours
- 2) Eating problems/difficulties
- 3) Sleeping issues
- 4) Mobility problems
- 5) Gait issues (particularly in older patients)

Dravet Syndrome UK families were asked whether or not they saw a neurologist:

85% said yes3% said no12% said other (epilepsy nurse)

Dravet Syndrome UK Survey

Of those who answered yes to seeing a neurologist they were asked how often they saw them:

5% less than once a year

5% once a year

54% twice a year

19% more than twice a year

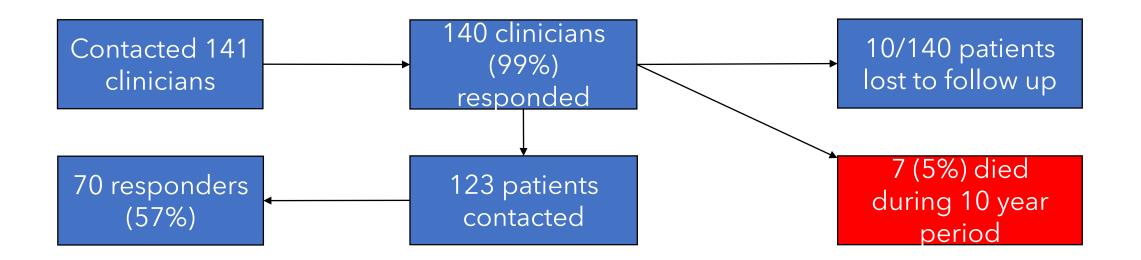
17% other (including telephone appointments and variations depending on health of the patient)

Dravet Syndrome UK families were asked to outline any other issues their families faced. Answers given (in no order) were:

Behaviour (this was the most common answer)

Refusal behaviour

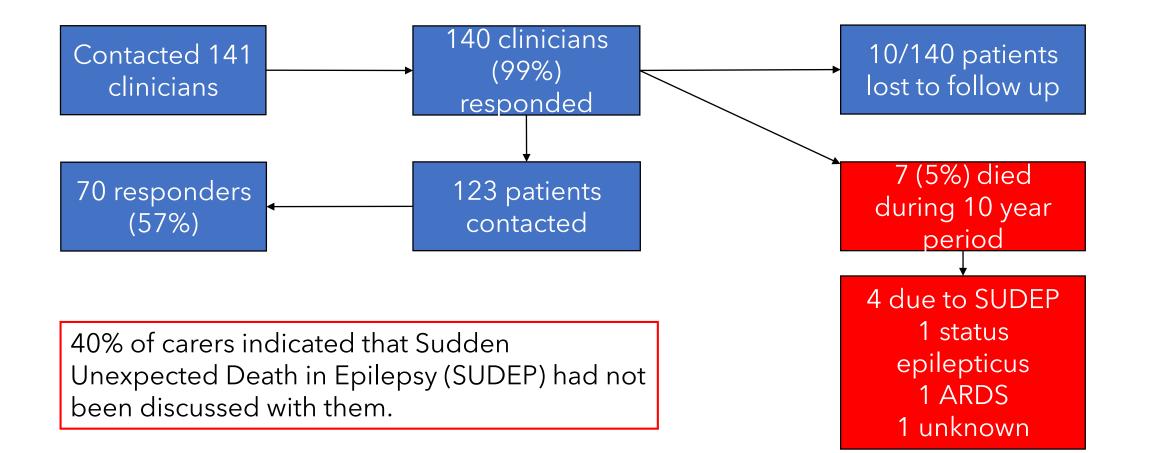
ADHD


Communication

Outreach issues - such as accessing respite for adults and physically being able to go out

Methods

- Longitudinal 10-year follow-up study from 2009 2019
- Structured Generic Questionnaire
- Adaptive Behaviour Assessment System, Third Edition (ABAS-3)
- Impact of Paediatric Epilepsy Scale (IPES)
- Epilepsy & Learning Disabilities Quality of Life Questionnaire (ELDQOL)
- Paediatric Quality of Life Inventory (PedsQL)
- Strength and Difficulties Questionnaire (SDQ)
- Sleep Disturbance Scale for Children


Patient recruitment

www.dravet.org.uk

#DSUKLondon19

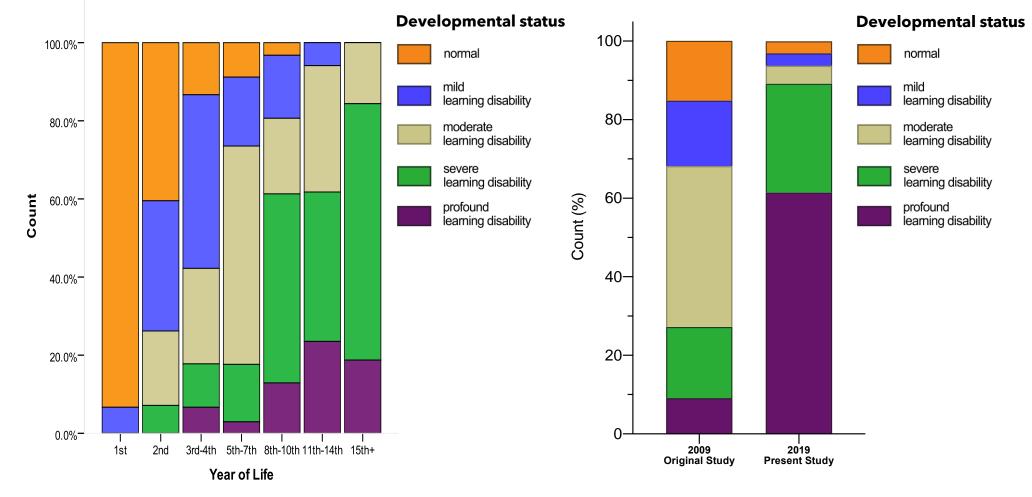
10-year Mortality in Dravet syndrome

Contents lists available at www.sciencedirect.com

Epilepsy Research

journal homepage: www.elsevier.com/locate/epilepsyres

Short communication


Mortality in Dravet syndrome

Monica S. Cooper^{a,b,c}, Anne Mcintosh^{d,e}, Douglas E. Crompton^{d,f}, Jacinta M. McMahon^d, Amy Schneider^d, Kevin Farrell^g, Vijeya Ganesan^h, Deepak Gillⁱ, Sara Kivity^j, Tally Lerman-Sagie^k, Ailsa McLellan¹, James Pelekanos^m, Venkateswaran Rameshⁿ, Lynette Sadleir^{o,p}, Elaine Wirrell^q, Ingrid E. Scheffer^{b,d,r,*}

► 10% of children with DS die of SUDEP before their 20th birthday

Dravet specific mortality is 9.32 per 1000-person-year

Cross-sectional and longitudinal analysis of development in DS over time

Brunklaus et al (2012) Brain;135(8):2329-36

www.dravet.org.uk

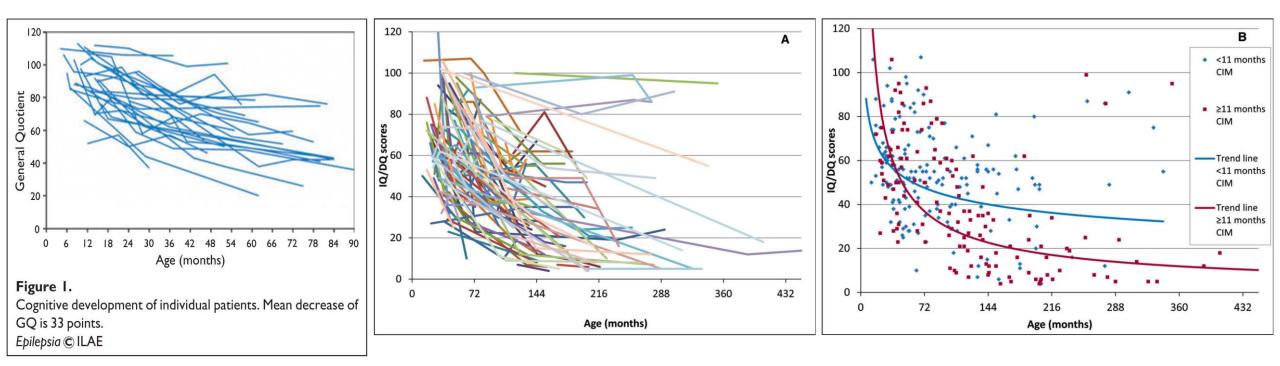
#DSUKLondon19

Epilepsia, 52(2):386–392, 2011 doi: 10.1111/j.1528-1167.2010.02925.x

FULL-LENGTH ORIGINAL RESEARCH

Cognitive development in Dravet syndrome: A retrospective, multicenter study of 26 patients

*Francesca Ragona, *Tiziana Granata, †Bernardo Dalla Bernardina, †Francesca Offredi, †Francesca Darra, ‡Domenica Battaglia, *Monica Morbi, §Daniela Brazzo, ¶Simona Cappelletti, ‡Daniela Chieffo, *Ilaria De Giorgi, †Elena Fontana, *Elena Freri, **Carla Marini, ††Alessio Toraldo, ‡‡Nicola Specchio, §Pierangelo Veggiotti, ‡‡Federico Vigevano, **Renzo Guerrini, ‡Francesco Guzzetta, and §§Charlotte Dravet


FULL-LENGTH ORIGINAL RESEARCH

DOI: 10.1111/epi.14191

Epilepsia

Influence of contraindicated medication use on cognitive outcome in Dravet syndrome and age at first afebrile seizure as a clinical predictor in *SCN1A*-related seizure phenotypes

Iris M. de Lange¹ | Boudewijn Gunning² | Anja C. M. Sonsma¹ | Lisette van Gemert³ | Marjan van Kempen¹ | Nienke E. Verbeek¹ | Joost Nicolai³ | Nine V. A. M. Knoers¹ | Bobby P. C. Koeleman¹ | Eva H. Brilstra¹

Impact on families

Feature	Occurrence number/total responses
Child/adult is:	
Completely independent	2/68 (3%)
Partially dependent	23/68 (34%)
Fully dependent	43/68 (63%)
Child lives:	
With family	62/68 (91%)
In residential care	8/68 (13%)
Have access to respite	47/65 (72%)
If yes, the respite received is sufficient	23/44 (52%)
Child/adult's illness has affected parent's health	65/66 (98%)
Child/adult's illness has affected parent's career	60/66 (90%)

Original article

Burden-of-illness and cost-driving factors in Dravet syndrome patients and carers: A prospective, multicenter study from Germany

Adam Strzelczyk ^{a,b,c,*}, Malin Kalski ^a, Thomas Bast ^{d,e}, Adelheid Wiemer-Kruel ^d, Ulrich Bettendorf ^f, Lara Kay ^{a,c}, Matthias Kieslich ^{a,g}, Gerhard Kluger ^{h,i}, Gerhard Kurlemann ^j,

Table 3 — Total costs associated with Dravet syndrome for a 3-month period (in 2017 Euro) (source: questionnaire and diary *).

Cost components (n $=$ 93 unless noted)	Mean cost	SD	Min	Median	Max	95% CI ¹	Annual costs ²
Direct health care costs							
Total including care grade allowances							
Informal care approach	6,043	5,825	148	4,054	30,447	4,935–7,350	24,171
Outpatient nursing approach	7,468	6,180	148	6,004	32,505	6,351–8,833	29,872
Total AED costs	892	1,017	0	532	4,779	708-1120	3,569
Productivity costs							
Total	4,790	5,325	0	2,841	21,327	3,868-5,953	19,159
Total maternal indirect costs	4,399	4,989	0	2,339	20,191	3,466-5,551	17,594
Quit work (n $=$ 29)	3,170	4,734	0	0	10,165	2,186-4,044	12,679
Reduced working hours (n $=$ 27) ⁶	732	1,522	0	0	10,030	491–1,188	2,930
Missed days (n $=$ 37)	496	1,594	0	0	10,026	266—976	1,986

Caregiver Burden Reports

- Stage 1: first year of life, emergence of febrile status
- Stage 2: around one year of life, other seizure types and emergence of behavioural problems
- Stage 3: children reaching early adolescence with seizure types decreasing and some improvement in behaviour

Nolan and Camfield 2006 & 2008

Family Relationships

- Stage 1: 67% no change in extended family relationships, 21% improved relationships, 8% negative effects (increased strain on relationship). Regarding spousal relationships – 1/3 no change, 1/3 improved and 1/3 worsening relationships
- Anxiety around fever: 90% reported significant impact on personal and social life, 84% reported that fever had impact on their professional life.

Nolan and Camfield 2006 & 2008

Family Relationships

- Stage 2: 54% of parents described this as being a particularly difficult time. Negative impact on relationships with family, friends and spouse. Sleep problems very common.
- Stage 3: Increasing difficulties in the friendships of children with DS in 80%. Family relationships can remain challenging.

Nolan and Camfield 2006 & 2008

FULL-LENGTH ORIGINAL RESEARCH

Comorbidities and predictors of health-related quality of life in Dravet syndrome

*†Andreas Brunklaus, *Liam Dorris, and *Sameer M. Zuberi

*The Paediatric Neurosciences Research Group, Royal Hospital for Sick Children, Glasgow, United Kingdom; and †School of Medicine, University of Glasgow, Glasgow, United Kingdom

Table 1. PedsQL parent-proxy report in Dravet syndrome compared to normative data						
Scales	N	Mean (SD) Dravet	Mean (SD) controls ^a	<i>t</i> -test ^b	p-value	
Scales		Dravet	CONTRONS	<i>t</i> -test	p-value	
PedsQL Generic	Core	Scale				
Total score	158	46.85 (19.99)	84.61 (11.19)	22.90	<0.001	
Physical	158	44.12 (28.85)	89.06 (12.27)	19.17	<0.001	
functioning						
Psychosocial	155	49.70 (17.58)	82.21 (12.67)	21.74	<0.001	
health						
Emotional	150	63.07 (20.85)	78.28 (15.54)	8.42	<0.001	
functioning						
Social	151	44.15 (24.11)	86.82 (15.42)	20.80	<0.001	
functioning						
School	139	40.63 (20.28)	81.52 (16.09)	22.34	<0.001	
functioning						

^aSummarized data from UK published norms for the PedsQL Core including 665 healthy children (Upton et al., 2005).

^bDifferences between published normative data and the observed data (mean and standard deviation) were calculated for each subscale, using a twosample *t*-test of summarized data (Minitab statistical analysis package).

KEY FINDINGS:

Impact of epilepsy in Dravet syndrome was worse compared to epilepsy controls with and without learning difficulties

Cross sectional analysis showed worse HRQOL in older age groups

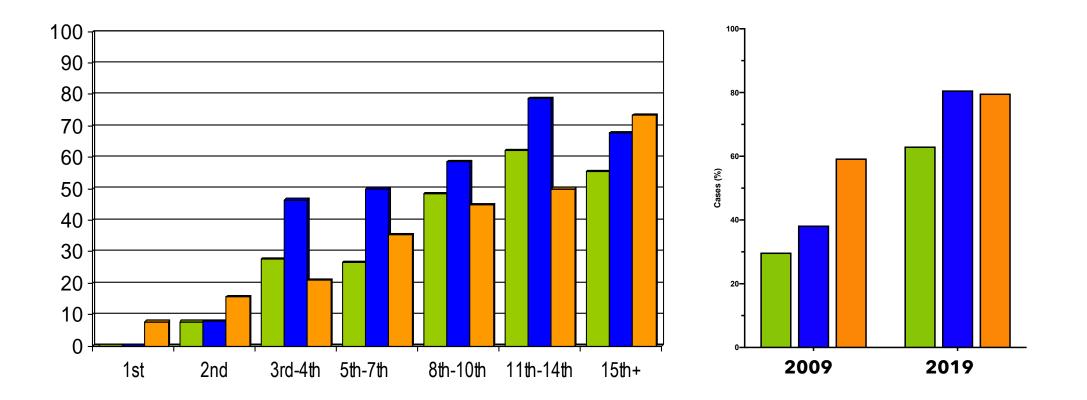
Overall 35% of children with Dravet syndrome scored in the abnormal range for "conduct problems" and 66% for "hyperactivity/inattention"

HRQOL in Dravet Syndrome

			Age categories					
Scale	2–3 years (n = 34) mean (SD)	4–5 years (n = 28) mean (SD)	6–9 years (n = 33) mean (SD)	10–14 years (n = 30) mean (SD)	≥15 years (n = 33) mean (SD)	d.f.	F	p-value ^c
PedsQL								
Total score	59 (21)	54 (16)	45 (18)	44 (16)	32 (16)	4,153	11.79	<0.001
Physical functioning	57 (27)	58 (25)	44 (28)	41 (27)	22 (22)	4,153	9.81	<0.001
Psychosocial health	62 (20)	52(13)	45 (15)	47 (15)	42 (16)	4,150	7.38	<0.001
Cognitive functioning IPES	43 (35)	22 (18)	21 (20)	19 (18)	17 (22)	4,147	6.01	<0.001
Total impact score SDQ	17 (9)	21 (9)	22 (8)	22 (8)	24 (7)	4,156	3.47	0.009
Total score	16 (6)	18 (5)	17 (5)	18 (4)	16 (6)	4,133	0.64	0.631

HRQOL Follow-up Data

	10-15 years						
Scales	N	Orig mean	N	FU mean	Р		
PedsQL Generic Core Scale							
Physical functioning	28	54.89	27	30.63	0.002		
Emotional functioning	28	68.57	27	63.66	0.365		
Social functioning	28	47.79	28	32.44	0.042		
School functioning	24	43.08	28	43.36	0.855		
Total score	24	51.21	28	41.13	0.006		
Cognition	28	33.71	24	20.49	0.009		
Eating	28	61.64	27	49.63	0.042		

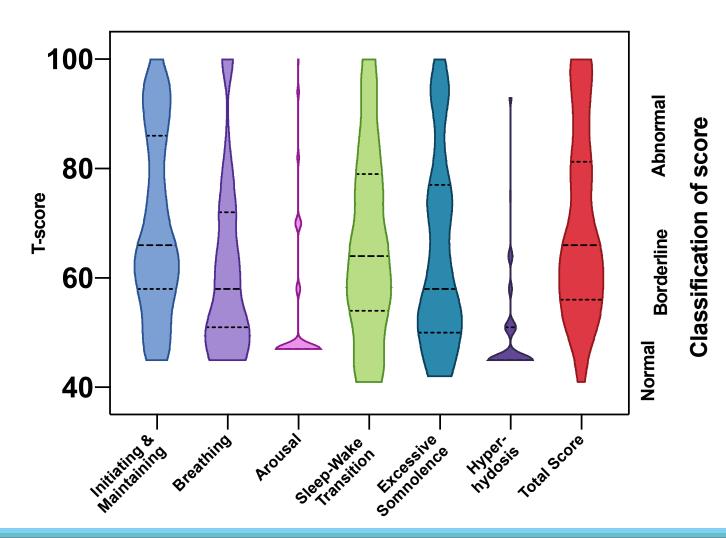

HRQOL Follow-up Data

		10-15 years					≥	16 yea	rs	
Scales	N	Orig mean	N	FU mean	Р	Ν	Orig mean	N	FU mean	Р
PedsQL Generic Core Scale										
Physical functioning	28	54.89	27	30.63	0.002	40	29.88	38	24.52	0.031
Emotional functioning	28	68.57	27	63.66	0.365	35	58.34	37	56.23	0.138
Social functioning	28	47.79	28	32.44	0.042	35	36.23	36	40.45	0.294
School functioning	24	43.08	28	43.36	0.855	36	30.83	26	35.13	0.187
Total score	24	51.21	28	41.13	0.006	33	39.78	36	37.15	0.557
Cognition	28	33.71	24	20.49	0.009	39	16.69	34	20.89	0.08
Eating	28	61.64	27	49.63	0.042	39	50.51	37	49.05	0.345

Comorbidities

Feature	Occurrence number/total
	responses
Eating difficulties	35/64 (55%)
Require gastrostomy/feeding tube	6/68 (9%)
Dental problems	20/63 (38%)
Mobility/walking problems	51/64 (80%)
Require walking aids:	29/68 (42%)
Insoles/splints/specialised boots	25/68 (37%)
Wheelchair	19/68 (28%)
Scoliosis	7/68 (10%)
Experienced bone fractures	27/68 (40%)
Access to:	
PT	34/68 (50%)
ОТ	32/68 (47%)
SALT	33/68 (49%)
Dietician	21/68 (31%)
Difficulties with sleep	45/67 (67%)

Comorbidities



■ Autistic features ■ Behavioural problems ■ Motor disorder

Medication response

Medications reported to have reduced seizure frequency	Number total (%)
Stiripentol	21/46 (46%)
Clobazam	18/46 (39%)
Sodium Valproate	24/46 (52%)
Medications reported to have increased seizure frequency	Number total (%)
Lamotrigine	17/40 (43%)
Carbamazepine	7/40 (18%)
Phenytoin	5/40 (13%)

Sleep Profile in Dravet Syndrome

- Sleep Disturbance Scale for Children
- Sleep, as measured by total sleep scale score, was abnormal in 40% of patients and borderline in 50%. Only 10% of patients with Dravet syndrome scored normal (n=58).
- Only 49% of individuals with abnormal sleep scores received treatment.
- Figure shows the distribution of sleep scores; mean=dashed line, IQR=dotted line, n=61 to 62, depending on sleep domain.

Sleep summary

- Forty four of 62 (71%) individuals had at least one abnormal category score or total sleep score
- Disorders of excessive somnolence was the most common sleep problem in the older age group (17 out of 33, 51%)
- The most common sleep problem for those aged 10-15 years was disorders of initiating and maintaining sleep (10 out of 28, 36%)

Sleep problems in Dravet syndrome: a modifiable comorbidity

SHANE H LICHENI¹ (D) | JACINTA M MCMAHON¹ | AMY L SCHNEIDER¹ | MARGOT J DAVEY² | INGRID E SCHEFFER^{1,3,4} (D)

1 Department of Medicine, Austin Health, University of Melbourne, Melbourne; 2 Melbourne Children's Sleep Centre, Monash Children's Hospital, Melbourne; 3 Florey Institute of Neuroscience and Mental Health, Melbourne; 4 Department of Neurology and Department of Paediatrics, University of Melbourne, Royal Children's Hospital, Melbourne, Australia.

What this paper adds

- More than 70% of patients with Dravet syndrome have sleep problems.
- Difficulty initiating and maintaining sleep was most common, particularly in those older than 20 years.
- Second most common were sleep—wake transition disorders, affecting more than 50% of those younger than 5 years.
- Sleep breathing disorders were a frequent problem across all age groups.
- Oximetry was not diagnostic of sleep-disordered breathing or obvious seizures.

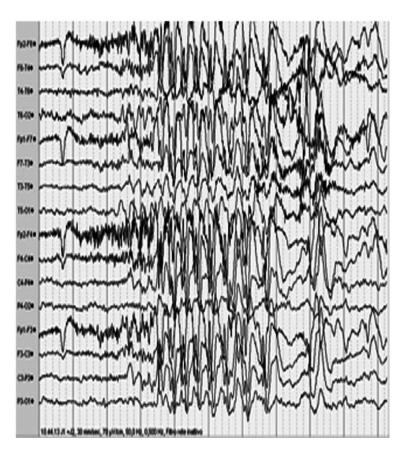
Transition to adult services

Of the 34 patients that have left paediatric services:

- 18 (53%) received a formal transition process to adult services
- 3 patients (9%) are not under the care of a neurologist
- 21/28 (75%) are satisfied with the adult services

Caregiver strategies to improve daily life

- Writing an emergency department protocol
- Establish emergency routines for the family
- Assigning a parent on-call to lessen the effect on siblings
- Creating personal time to decrease parental stress
- Finding respite care
- Contacting internet support groups


The clinical utility of an *SCN1A* genetic diagnosis in infantile-onset epilepsy

ANDREAS BRUNKLAUS¹ | LIAM DORRIS¹ | RACHAEL ELLIS² | ELEANOR REAVEY² | ELIZABETH LEE¹ | GORDON FORBES² | RICHARD APPLETON³ | J HELEN CROSS⁴ | COLIN FERRIE⁵ | IMELDA HUGHES⁶ | ALICE JOLLANDS⁷ | MARY D KING⁸ | JOHN LIVINGSTON⁵ | BRYAN LYNCH⁸ | SUNNY PHILIP⁹ | INGRID E SCHEFFER¹⁰ | RUTH WILLIAMS¹¹ | SAMEER M ZUBERI¹

- "We were very relieved when the results came back. It was like a weight had been lifted after 12 years"
- "It gave a reason for his epilepsy as before we kept blaming ourselves. More importantly it gives some indication to professionals what drugs to try"
- "Confirmed that management of condition is paramount, scans, tests, surgery routes no longer necessary"
- "It finally (after 14 years) gave a diagnosis helpful in form filling!"
- "We now have a diagnosis and have set small goals for the future"

Addressing Comorbidities

- Optimise seizure control
- Control status epilepticus
- Clear treatment protocols

Behaviour problems, ADHD & ASD like features

- Neurodevelopmental assessments
- Identifying key issues
- Nurseries and schools already have a wealth of knowledge how to address this in day to day life
- Creating routines

Mobility problems

- Physiotherapy assessment
- Orthotics review
- Need for insoles, mobility aids

Diet and Sleep

- Monitor weight gain
- Dietician review
- Consider alternative feeding options
- Sleep review
- Sleep strategies

Feeling stressed?

- Don't keep it to yourself
- Supportive team of nurses, doctors and psychologists
- Dravet Syndrome UK

Dravet Syndrome Natural History Study

- Emergence of drugs effective at reducing seizure burden, however impact on cognition and development unknown
- Without understanding the natural history of DS it will not be possible to measure treatment success beyond seizure control
- Need to characterise disease phenotype in detail
- A natural history study will allow us to provide standardized and better care for our patients tailored to their needs
- Model for other developmental & epileptic encephalopathies